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Abstract. X-ray diffraction structure analysis is the main tool that allows obtaining information on the

structure of biological micromolecular objects with atomic resolution. Until now, the main limitations of the

method are the need to prepare a sample in the form of a crystal, and the loss in the experiment of a substantial

part of the information necessary for the reconstruction of the object under study. The emergence of new powerful

X-ray sources, namely X-ray Free Electron Lasers, creates a potential opportunity to get rid of both limitations.

Realization of this potential in practice is a challenge for computational methods. This paper discusses possible

approaches to solving one of the emerging problems, namely the restoring of lost in the experiment information

about the intensity of a part of the scattered waves using the measured intensities of the remaining waves.

Theoretically this problem could be solved, as the intensity is an entire holomorphic function, but encounters

difficulties in practical implementation.
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1 Introduction

In the region of molecular biology X-ray diffraction structure analysis is applied to study of
proteins, viruses, DNA, RNA, their complexes, and molecular machines (such as the ribosome).
In recent years, attempts have been made to apply it to the study of cellular organelles and whole
cells (Rodrigues et al., 2015; Lunin et al., 2017). At the final stage of the study, the determination
of a structure implies the determination of the Cartesian coordinates of all (sometimes tens of
thousands) atoms that compose the molecule and of certain additional parameters of atoms, for
example, quantities characterizing the degree of uncertainty (dynamic and static) of each atom.
At present, atomic structures of more than one hundred thousand biological macromolecules have
been determined and deposited in Protein Data Bank (Berman, 2000; https://www.rcsb.org/).
However, at initial stages, the goal is usually the electron density distribution function ρ (r),
that describes the spatial distribution of electrons in the molecule. With sufficient accuracy of
finding this function, the positions in the space of its maxima can be interpreted as centers of
atoms.

The X-ray diffraction analysis is based on the study of X-ray scattering pattern and appears
under different names, such as X-ray diffraction analysis, biological crystallography, coherent
diffraction imaging, X-ray microscopy, and so on. Within the framework of the kinematic the-
ory of diffraction, it can be described as follows. The object under study is placed in an incident
beam of X-rays, that can be considered as a plane electromagnetic wave or as a wave of force act-
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ing on the object’s electrons. Under the influence of periodically changing forces, the electrons
oscillate. Each oscillating electron becomes a source of a secondary spherical electromagnetic
wave propagating in all directions of the three-dimensional space. At the detector, the secondary
waves superpose, forming the wave scattered by the object toward the detector. This wave is
historically, referred to as the reflection. The detector measures the energy of this wave, that
is proportional to the square of its amplitude. The amplitude of the scattered wave depends
on the phase differences in the secondary waves, which, in turn, are determined by the mutual
arrangement in the space of the oscillating electrons. The successive solution of Newton’s equa-
tions of the motion of an electron under the influence of an electromagnetic wave and Maxwell’s
equations of the scattering by the oscillating electron allows to represent the complex amplitude
E of the scattered wave as

E = εE0F (s) . (1)

Here ε is the combination of physical constants and parameters of the experimental setup,
E0 is the amplitude of the incident wave. The complex value F (s) = F (s) exp [iφ (s)]], called
as the structure factor, is determined by the distribution of the electron density in the object
under study and the geometry of the experiment by means of the equalities

F (s) =

∫
R3

ρ (r) exp [2πis · r] dV r , s ∈ R3 , (2)

s =
σ − σ0

λ
. (3)

Here ρ (r) is the function describing the density of the space distribution of the electrons in the
sample under study; σ0, σ are the vectors of unit length defining the direction of propagation of
the incident wave and the direction from the sample to the detector; λ is the wavelength of the
used X-ray radiation (it is about 1Å in biological crystallography applications); s · r denotes the
scalar product of the vectors s and r. The vector s defined by (3) is called the scattering vector.
It identifies the scattered wave, and the term reflection is often applied directly to the scattering
vector. Equations (1-3) form the basis for calculations in the kinematic theory of diffraction.
Following to crystallographic traditions we call the argument φ (s) of the complex number F (s)
the phase.

The values immediately obtained in the experiment are the energies of scattered waves that
are proportional to the squares of the magnitudes of the corresponding complex structure factors.
The value I (s) = |F (s)|2 will be referred to as the intensity of the reflection s, and the full set of
intensities

{
I (s) , s ∈ R3

}
will be referred as the diffraction pattern. The change of the detector

position and the direction of the incident X-ray beam relative to the object makes it possible
to have different values of the vector s and thereby determine experimentally intensities for
different vectors in the three-dimensional space. In biological crystallography the value inverse
to the scattering vector length d = 1/|s| is referred to as the reflection resolution. It is equal to
the distance between the maxima planes of the real and imaginary parts of the three-dimensional
Fourier harmonic exp [2πis · r]. Let S be the set of vectors s, for which the intensity values I (s)
have been observed. Since σ0, σ are the vectors of unit length, the set S is bounded by the
theoretical limit |s| ≤ 2/λ . In practice, the set of reflections for which it is possible to observe
I (s) experimentally can be essentially reduced in comparison with this theoretical limit. It is
customarily said that the study is carried out at resolution dmin, if all (or almost all) reflection
with |s| ≤ smax = 1/dmin are present in the set S. The resolution is an important characteristic
of the results obtained. It determines the characteristic dimensions of the visible details of the
structure and the accuracy of structure determination.

Equation (2) makes it possible to obtain the electron density distribution in the object by
means of the inverse Fourier transform provided that both the magnitudes and phases of the
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complex structure factors F (s) are known for all points in the real three-dimensional space R3

ρ (r) =

∫
R3

F (s) exp [−2πis · r]dVs , r ∈ R3 . (4)

Since only magnitudes of structure factors can be observed in the experiment, this poses
the phase problem of X-ray structure analysis, namely, to determine the phase part of the
complex Fourier transform provided its magnitude is known. It is clear that in a such general
form the problem is meaningless, as any function φ (s) can be taken as a solution. In order to
make the task reasonable, the class of admissible electron density distributions or the class of
admissible sets of phases must be restricted. Two classes of distributions which are of the greatest
interest in crystallography are the functions with a compact support (describing individual
biological particles) and triple-periodic functions (describing distributions of the electron density
in crystals). In this paper we will be interested in the first class of functions describing the
distribution of the electron density in a single particle.

The second problem that arises when the electron density distribution is restored by the
formula (4) is that even the magnitudes of structure factors are known only for a limited set of
reflections S. An exclusion from the calculation of the transform (4) of high-resolution structure
factors (the ones corresponding to high-frequency Fourier harmonics) leads to image distortions,
manifested as blurring and merging of the peaks of the electron density, as well as the appearance
of series termination waves. Therefore, the result obtained in practice is an approximation to the
distribution of electron density with a resolution determined by the resolution of the experimental
set S. This approximation is referred to in crystallography as Fourier synthesis of the electron
density. The approximation found is used to obtain the map that is a graphical representation
of iso-surfaces of this approximation. Depending on resolution of the used data set, such maps
allow to see the general outlines of the object, the course of the polypeptide chain, the location
of the side chains and, in favorable cases, the peaks of the electron density, corresponding to
individual atoms. These maps are used to construct the atomic model of the object. The
process of constructing a model from electron density maps is referred to as the interpretation
of the electron density distribution. Especially significant distortions in the image of an object
in electron density maps arise when structure factors of the central zone |s| ≤ smin or structure
factors for which the values of F (s) are very large are absent. The lack of such information may
be caused by the features of experimental equipment and is one of the significant obstacles in
the way of obtaining an interpretable map of the electron density distribution. Below we will
consider approaches to overcoming this problem.

The parameter ε in equation (1) includes the physical constants and parameters of the
experimental setup. Under the conditions of a real experiment, it can be estimated to be of the
order of 10−12. The registration of such weak waves is a serious experimental problem solved
since the discovery of X-ray diffraction at the very beginning of the 20th century. Two obvious
ways to solve this problem are the increasing of the power of the X-ray source and sensitivity
of the detector. At the present time, such powerful sources of X-ray radiation as synchrotron
accelerators are used at the final stages of X-ray study. The main type of detector, currently
used in biological crystallography, are two-dimensional matrix detectors, allowing simultaneous
recording of a set of intensities for a two-dimensional set of reflections. This two-dimensional
set of intensities is referred to as the frame or the image. Rotation of the object allows to get
a series of frames, that cover a three-dimensional domain of scattering vectors. The sensitivity
of modern detectors is brought to the level of registration of one X-ray photon incident on
the pixel of the detector. However, despite all the advances in these areas, until recently the
recording of scattering by a separate biological macromolecule remained impossible. The only
way to make the intensity measurable was to prepare a crystal of the studied object. In a
crystal, a lot of identical and similarly oriented molecules are arranged into three-dimensional
regular lattice, defined by the lattice periods {a, b, c}. For a middle-size protein and typical for
biological crystallography crystal dimensions (0.1 mm) the number of molecules in the crystal
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may be estimated as 1012. Depending on the direction of the scattering the waves scattered by
different copies of the molecule may come all with the same phase or with different phases. In
the first case the amplitude of the resulting wave grows proportionally to the number of copies
of the molecule and becomes measurable. In the other case the amplitude of the summary wave
remains immeasurable. The condition of a measurable reflection (a Bragg reflection) may be
written as

s · a = h, s · b = k, s · c = l, h, k, l ∈ Z, (5)

where Z denotes the integer numbers. The use of crystals makes it possible to measure the
intensities for a discrete subset of the scattering vectors, however, the loss of a significant part
of the information significantly complicates the solution of the phase problem.

The situation has changed significantly with the advent of new powerful X-ray sources,
namely X-ray Free-Electron Lasers (XFEL), in combination with a new scheme for organizing
the experiment, referred to as serial crystallography (Ayyer et al., 2015; Spence, 2017). XFEL
provides with extremely powerful and short (10-50 femtoseconds) pulses. Under the influence
of such a pulse, the biological particle eventually destroys, but during the time of the action of
the pulse it is possible to measure the diffraction of yet undisturbed particle (diffraction before
destruction). This result in one two-dimensional frame of intensities of scattered waves. In order
to assemble a three-dimensional data set, a series of randomly oriented identical particles is used,
alternately directed to the point of meeting with the pulse. Unlike traditional crystallography,
where the orientation of the object changes in a controlled manner, in the serial crystallography,
the mutual orientations of the exposed particles are unknown. This creates a problem when
converting a set of two-dimensional frames into a single three-dimensional data set (Loh &
Elser, 2009). The success of such a procedure essentially depends on the completeness of the
data set collected for each of the frames. Theoretically, the size of this set is limited only by
the wavelength λ of the X-rays beam through the restriction |s| ≤ 2/λ, but in practice, due
to the rapid decrease in intensity with increasing |s|, this limit is much smaller. In addition,
there are a number of additional factors limiting the S-set. First, central-zone reflections (for
which scattering directions are close to the direction of the incident beam) may be absent.
Second, there may be absent whole bands of reflections that fall on the joints of blocks from
which the detector consists. Third, the intensity of some particularly strong reflections can
go beyond the sensitivity limits of the detector (oversaturated reflections). The absence of
intensity values, and as a consequence, the absence of the corresponding structure factors F (s)
in calculation of the electron density distribution can strongly distort the Fourier synthesis
maps and significantly complicate their interpretation. Below we discuss ways to restore, at
least in part, intensities lost in the experiment by means of the use of Whittaker-Nyquist-
Kotelnikov-Shannon interpolation formula and its extensions. This formula is broadly used in
signal processing and it was previously used in crystallographic applications for interpolation
of complex structure factors values (Sayre, 1952; Bricogne,1976). We discuss its usefulness for
repairing of the missed intensity values. Some other ways to solve this problem were discussed
earlier in (Lunin 1988; Urzhumtsev et al., 1989; Urzhumtsev, 1991).

2 Whittaker-Nyquist-Kotelnikov-Shannon interpolation formula

Let the function ρ (r) defined by (4) describes electron density distribution in an isolated particle
and so it has a compact support. We define its autocorrelation function

P (r) =

∫
R3

ρ (u) ρ (u− r)dV u (6)

that has a compact support as well. This function is referred to as Patterson function in
crystallography. The Fourier transform of this function is the intensity I (s)∫

R3

P (r) exp [2πisr] dV r = |F (s)|2 = I (s) (7)
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that is immediately determined in the X-ray diffraction experiment. It should be emphasized
that, unlike the complex values F (s) of the structure factors, for which the experiment provides
with the values of magnitudes only, the real nonnegative values I (s) may be completely deter-
mined in the experiment. So that, it can be said that the experiment allows to calculate the
Patterson function

PS (r) =

∫
S
I (s) exp [−2πis · r]dVs , r ∈ R3 (8)

with an accuracy determined by the completeness of the set S of scattering vectors for which
the intensities I (s) have been obtained experimentally.

At the same time, since the function P(r) has the compact support, then, by the Paley-
Wiener theorems, its Fourier transform I (s) can be extended to entire function in the complex
three-dimensional space C3. This means a strong interconnection of the values of this function
taken at different points inR3 and, in theory, gives the possibility of restoring the missing values,
on the basis of the set of available intensities. For example, if the values of this function are
known in a certain sphere in R3, then they determine uniquely the values of this functions in all
points in C3, for example, by means of the Taylor series. Unfortunately, such an opportunity
while exists theoretically, cannot be easily implemented in practice. Such disbalance between
theoretical expectations and practical possibilities is a challenge for computational methods.
Below we will discuss some ways of partially solving this problem. We discuss the problem of
repairing the diffraction pattern using the Whittaker-Nyquist- Kotelnikov-Shannon interpolation
formula.

Let the basis {a, b, c } in R3 and the origin are chosen so that the support of P (r) is
contained inside parallelepiped V (the unit cell), build on these vectors, and the origin is placed
to the center of V

V =

{
x1a+ x2b+ x3c : −1

2
< x1, x2, x3 ≤

1

2

}
, suppP (r) ⊂ V. (9)

Let {a∗,b∗, c∗} be the conjugate basis, and R′ be the lattice, build on this basis

R′ = {k1a∗ + k2b
∗ + k3c

∗ : k1, k2, k3 ∈ Z} , (10)

where Z denotes the integers. The coordinates of the scattering vector in the conjugate basis
will be called reflection indexes. The lattice vectors have integer indexes. Inside the cell V the
function P (r) can be represented as the Fourier series

P(r) =
1

|V|
∑
k∈R′

I(k) exp[−2πikr], r ∈ V , (11)

where

I (k) =

∫
V
P (r) exp [2πikr] dVr =

∫
R3

P (r) exp [2πikr] dVr , k ∈ R′. (12)

A discrete set of intensities {I (k) : k ∈ R′} with integer indexes will be called cardinal intensities.
This set completely defines the function P (r), and hence the values of the remaining (inferior)
intensities I (s) for all other vectors s ∈ R3 :

I (s) =

∫
R3

P (r) exp [2πisr] dVr =

∫
V
P (r) exp [2πisr] dVr , s ∈ R3. (13)

Substitution of P (r) in (13) by its value defined in (11) results in Whittaker-Nyquist-
Kotelnikov-Shannon interpolation formula:

I(s) =
∑
k∈R′

γ(s− k)I(k), s ∈ R3, (14)
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where

γ (h) =
1

|V |

∫
V
exp [2πihr] dVr, h ∈ R3. (15)

The calculation of the integral, taking into account the condition (9), leads to

γ(h1a
∗ + h2b

∗ + h3c
∗) = sinc(h1)sinc(h2)sinc(h3),

sinc(x) = sin(πx)
πx .

(16)

This function is equal to zero for non-zero integer values of the argument. For the vector
h = h1a

∗ + h2b
∗ + h3c

∗ let denote

H = (h1, h2, h3)
T , IH = I(h),

sinc(H) = sinc(h1)sinc(h2)sinc(h3).
(17)

The interpolation formula can now be represented in the form

IH =
∑
K∈Z3

sinc (H−K) IK, H ∈ R3. (18)

The interpolation formula makes it possible to reconstruct the inferior intensities, assuming
that the cardinal intensities are known. Since inferior intensities are expressed through the
cardinal ones, they are sometimes treated as redundant, not carrying additional information.
However, such an interpretation is valid only in the ideal case, when the full infinite set of
cardinal intensities is known. In real cases, this set is limited, and the formula (18) is not exact
more and turns into an equation restricting the values of unknown cardinal intensities, provided
that inferior ones are known.

3 Repairing of cardinal intensities

In the case when one of the cardinal intensities is unknown, formula (18) does not allow obtaining
it value, since for integer indexes H the formula degenerates into the tautology IH = IH. We
now derive a modification of the interpolation formula that allows to reconstruct the missing
cardinal intensities from the known values of inferior ones. For this we will use the available
freedom in choosing the sampling basis {a∗,b∗, c∗}. Some restriction on the choice of this basis
is imposed by the condition (9). The cell V build on the conjugate basis {a, b, c } must be
large enough to contain the support of the function P (r). In the one-dimensional case, this
limits the minimal cell size by the diameter of the support of P (r), and the discretization step
by the inverse of this value. This maximal possible discretization step, with which interpolation
formula (18) is still valid is called the Nyquist limit. Sometimes this limit is interpreted as a
rigid recommendation on the choice of the step of discretization, motivating it by the fact that
for a larger step the cardinal intensities become dependent. However, all this is true only if the
full (infinite) series of cardinal values is present. In the absence of a part of such values, the
freedom in choosing of discretization basis can serve as a tool for restoring the lost values of
cardinal intensities. When the sampling basis changes, the nodes of the lattice R′ can receive
non-integer indexes in the new basis and their intensities can be restored by interpolating from
the new cardinal values, which were inferior ones in the old basis.

Let {a∗new,b∗
new, c

∗
new} be a new sampling basis and A is 3 × 3 matrix whose columns are

the coordinates of the new basis vectors in the old basis. Let H and Hnew denote the columns of
the coordinates (indexes) of the vector h ∈ R3 in the old and new bases correspondingly. These
coordinates are related by H = AHnew. We denote by

IH = I (h1a
∗ + h2b

∗ + h3c
∗) , JH = I (h1a

∗
new + h2b

∗
new + h3c

∗
new) (19)
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the intensities indexed in the old and new bases, respectively, which are related as

JH = IAH, H ∈ R3. (20)

Writing out in the new basis the interpolation formula for the vector A−1h

JA−1H =
∑
K∈Z3

sinc
(
A−1H−K

)
JK , H ∈ R3, (21)

and returning to the coordinates of the original basis using (20), we obtain a repairing interpo-
lation formula in the form

IH =
∑
K∈Z3

sinc
(
A−1H−K

)
IAK. (22)

If H ∈ Z3, but A−1H /∈ Z3, then this formula allows one to obtain the intensity value from the
cardinal set as a linear combination of intensities with, generally speaking, non-integer indexes.
Thus, the possession of intensity values with non-integer indexes may allow one to restore the
cardinal intensity values. This formula is complementary to the formula (18), where inferior
intensities were restored through the cardinal ones. The matrix A in the formula (22) can be
any non-singular matrix ensuring the condition suppP (r) ⊂ Vnew.

Let consider one more method of using inferior intensities to restore the values of the cardinal
ones. Let some basis of discretization be chosen and a corresponding set of cardinal intensities be
assigned. We divide this set into two parts: the cardinal intensities known from the experiment
(we will designate this set BK) and the cardinal intensities, the value of which are unknown (the
set BU ). For each inferior intensity IobsH measured in the experiment, the interpolation formula
allows to set the equation∑

K∈BU

sinc (H−K) IK = IobsH −
∑

K∈BK

sinc (H−K) IobsK , (23)

which restricts the values of unknown cardinal intensities {IK, K ∈ BU}. Writing out such an
equation for each measured inferior intensity, we get a system of linear equations that makes it
possible to determine unknown base intensities in a limited resolution zone |k| ≤ 1/dmin.

4 Test results

As the test object, the aldose reductase structure, previously determined with a sub-atomic
resolution of 0.8Å was selected (Petrova et al., 2006; PDB ID 2i16;). The dimensions of the
minimal orthogonal cell enclosing the molecule were defined as 70. × 50. × 70.Å, and the
dimensions of the expanded cell containing the support of the Patterson function (6) were set
as 140×100×140Å. To simplify the visualization the presented tests were carried out for one
dimensional set of data, which corresponds to projection of the aldose molecule on Ox axis.

In one-dimensional case the interpolation formula may be presented as

Ih =
∑
k∈Z

sinc (h− k) Ik , h ∈ R, (24)

where Ih = I (h/a) , a = 140
◦
A . The intensities have Hermitian symmetry I−h = Ih, so that

(24) may be reduced to

Ih = sinc (h) I0 +
∞∑
k=1

[sinc (h− k) + sinc (h+ k)] Ik , h ∈ R, (25)
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Two sets of exact intensity values were calculated starting from atomic coordinates in the res-

olution range ∞ = 1
◦
A, that means up to hmax = 140. The first set was composed by car-

dinal intensities {Ik : k = 0,± 1,± 2, . . . , ±140}, the second one contained inferior intensities

{Ih : h ∈ R} calculated with the step △h = 5× 10−4
◦
A.

Fig. 1 shows the values of exact intensities and reveals two important features of crystallo-
graphic data. First, the scale of the data may change a billion times from the central zone to
periphery. Second there exist a lot of very deep and narrow dips in intensity values, which are
very difficult for the interpolation.

Fig. 2 shows the quality of the interpolation with the use of the interpolation formula (18)
with the cardinal set restricted by resolution 1Å (|h| ≤ 140). The quality of interpolation is quite
good. It is worthy to note especially, the quality of interpolation between cardinal intensities I6
and I7 , where a deep pit is reproduced quite well.

Figure 1. The exact intensities values in usual and logarithmic scales.

Figure 2. Cardinal, interpolated and exact intensities. Cardinal set (∞-1.Å) is used.

Figure 3. Interpolation using (∞-5.Å) cardinal set.
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Fig. 3 demonstrates the effect of further truncation of cardinal series by resolution. Now the
resolution of the cardinal set was restricted to 5Å (|h| ≤ 28). We see that the interpolation is
still good for resolution lower than 5Å, but totally fails to represent the signal beyond this limit.
This is not surprising, as the function sinc (x) is rather well localized, so that the value of the
interpolating line at some point is defined, mainly, by a small number of neighboring cardinal
intensities.

Figure 4. Interpolation using (∞-1.Å) cardinal set with the only one reflection I0 excluded.

The situation changes drastically, if a small number of lowest resolution reflections are absent
in the cardinal set. Fig. 4 shows the effect of exclusion of only one intensity I0 from the cardinal
set. It is interestingly to note, that the extension of the zone of lost low-resolution cardinal
intensities improves the quality of interpolation in the middle resolution zone (Fig.5). If 29
reflections of the 10Å resolution central zone (|h| ≤ 14) are excluded from the cardinal set,
then the interpolation becomes not ideal, but reasonable in the resolution zone 10-1Å. Such
behavior of the interpolation curve can be explained by the existence of extremely large central
peak of intensity in the low-resolution zone. When being excluded these reflections influence the
interpolated values even at large distances.

Figure 5. Interpolation using restricted cardinal sets: 30.-1.Å (left) and 10.-1.Å (right).

Fig. 6 shows the result of restoring of 9 low-resolution reflections in (∞-30.Å) resolution zone
(|h| ≤ 4) by solving of the system of linear equations (23). The exclusion of these 9 reflections
from the cardinal set leads to a poor quality of the interpolation (Fig. 5, left). To restore
these values, the system of linear equations (23) was formed using 1929 inferior intensities
(|h| > 4), which were supposed to be known. The linear equations were solved by Singular
Value Decomposition method. The found values are listed in the Table 1. The found values
for low-resolution cardinal intensities were added to the cardinal set to restore the excluded
ones. Fig. 6 shows the result of application of the interpolation formula when using the restored
low-resolution cardinal intensities. In contrast to Fig. 5 (left) here the quality interpolation is
quite good.
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Figure 6. Interpolation using (∞-1.Å) cardinal set with restored intensities in (∞-30.Å) zone.

Table 1. The exact and restored values of the excluded cardinal intensities.

h I exact I restored

0 0.500396E+09 0.504212E+09

1 0.380557E+09 0.383364E+09

2 0.156493E+09 0.157573E+09

3 0.272373E+08 0.274242E+08

4 0.620644E+07 0.621577E+07

5 Conclusion

Despite the tremendous successes achieved in determining the structure of biological macro-
molecules by the X-ray diffraction methods, some theoretical and practical questions remain
open. Advance in this area could be extremely useful for the crystallographic practice and bio-
logical applications. This especially applies to the case of the study of isolated particles, where
the gap between the theoretical possibility of recovering intensities and phases of structure fac-
tors and the practical possibilities of doing this is still large.
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